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Energy Scenario : INDIA

• By 2100 India needs about 900 
GWe (9 times todays
requirement)

• Most of them has to be 
produced with coal and the 
carbon emission increases by 5 
times 

• If fusion power reactor is 
available by 2050, by 2100 it can 
give 67 GWe

P. R. Shukla et al., IIM, 
AhmedabadIndia should have Fusion 

Power Reactor by 2050  
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IFPP Design :Objectives

• Production of more than 1 GW net electricity
• Power plant should operate atleast for 25 FPY
• Availability of the plant should be minimum 60 %(40 

yrs@60 % ~ 25 FPY)
• Cost of the electricity should be either comparable or little 

higher than the available one
• Environmental safety should be safe guarded
• Base line design should be 

– Conservative  (any improvement will be a boost)
– Try to use the known technologies
– Try to use the available materials

• Design should indicate the possible directions to improve 
the design further



IFPP : Physics design

• Fusion performance or fusion gain (Q) has to be 
maximized

• Q depends on plasma performance
– Confinement time
– Impurity level
– n/nGW
– βN
– Normalized power crossing the separatrix

• In-directly depends on the geometry of the system
– Maximum toroidal field at the TF conductor
– Area available for the neutron load (breeding and damage)
– Area available for the heat removal
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Model : ITER-FEAT

Plasma 
parameters

ITER-FEAT Model prediction

R0

a
Bt (T) 5.3 5.4
Ip(MA)

Ploss/PLH

Pfusion (MW)
Paux(MW)

<n20>
<T> keV

βN

6.2 6.13
2.0 1.98

15.0 15.1
2.5 2.1
500 500
50 50
1.1 1.1
8.9 8.9
2.0 1.9



Model : IFPP
Plasma 

parameters
IFPP-base 

line
R0

a
A 3.0

fbs(%) 25

Bt (T) 6.0

Q 30

Ip(MA)

Ploss(MW)
Pfusion (MW)
Paux(MW)

n/nGW

<T> keV
βN

7.7
2.6

21.4

522 
2500

83

0.93
15.5
2.3

Plasma 
parameters

IFPP-base 
line

R0

a
A 3.0

fbs(%) 50

Bt (T) 6.0

Q 30

Ip(MA)

Ploss(MW)
Pfusion (MW)
Paux(MW)

n/nGW

<T> keV
βN

7.7
2.6

17.8

720 
3300
110

0.93
21.5
3.3



IFPP : MHD

MHD Equilibrium Ideal MHD stability 
with PEST-2



IFPP : Sub-systems

For base line design
TF system

• Btmax is 12 T (Nb3Sn)
• D-shaped (width of D-shape = 11.4 m, height = 

12.4 m), Coil width is 0.6 m radial and 1.37 m 
toroidal, Current density is 25 Amp/mm2

• 16-18 TF modules, Electro-magnetic stress of 750 
MPa

• Central solenoid with radial width of 1.4 m and 
radius 1.9 m, 12 m height can provide about 100 
V-s

• Cooling requirement is around 20 kW @ 4.2o K

S. Pradhan et al.



IFPP : Sub-systems

Divertor
• Expected heat load is 10 –

15 MW/m2 (for single null)
• Double null case for 10 mm 

SOL, angle 20o , it is about 
5 - 8 MW/m2

• In board div. area 30 m2

and out board div. area 50 
m2

• Number of modules has to 
be decided by the available 
port size 

469.2mm

992.2mm

525.1mm

29
9.

7m
mXY 

Scale
1:10

Sameer et al.



IFPP : Sub-systems…

Auxiliary power
• 80 MW –ve NBI will sustain the required plasma 

current
• Boot strap fraction is only 25 - 50% considered
• Additional RF power of 70 MW needed for 

controlling the plasma, CD and heating
• PICRH~30 MW (additional heating) 
• PEC~20 MW  (Startup, ECCD to suppress MHD 

activity)
• PLH~ 20 MW (for advanced scenario)

P. K. Sharma et al.



IFPP : Sub-systems…

Blanket system
• LLCB (structural 30 %, Pb-Li 40 %, 

Ceramic breeder 30 %)
• Inboard blanket thickness ~ 0.85 m and 

outboard thickness ~1.14 m
• Port size 2.4 m tor., 5.12 m height, 

blanket module size ~2x2x1.2, available 
area for breeding is 75%

• Structure material is ferritic steel
• Neutron wall load ~1.69 MW/m2

• TBR ~ 1.1
• Gain ~ 1.2
• Thermal efficiency ~ 0.3

Shishir et al.



Materials for IFPP
• High heat flux materials

First Wall Tungsten on LAFMS
Diverter                             Tungsten ( W ) H2O / He cooled

• Structural Materials
– LAFMS

• Blanket Materials
– Tritium breeding materials (Li2 TiO3 and Pb-Li )
– Neutron Multiplier            ( Pb)
– Flow channel inserts          (SiCf /SiC composite )

• Coolant

– He , Pb-Li

• Shielding Material
• WC

• Coatings
– Trtium Permeation barrier (Al2O3 )

P. M. Raole et al.



Tritium breeding calculations

FW

Two separate 
BUs has been 
modeled 

14.1 Mev Planar 
source is  used

Breeder material: 
Li2TiO3 (90 %)

Multiplier 
material: Pb-Li

Structure 
material: 
EUROFER

Alumina

Pb-Li

Ceramic 
Breeder

Graphite

tungsten  
carbide

FMS plate Iron



IFPP : Fusion Tech. Development

• Magnet system
– High Tc superconducting magnet
– High magnetic field at low temperature (Nb3Al)
– Reduced central solenoid

• Divertor system
– Single or double null
– Modify the magnetic topology near the divertor
– Special materials for high heat flux

• Blanket system
– Tritium breeding
– Power gain
– Operating temperature (for thermal efficiency)



Variation with aspect ratio 
Q = 30, Pf = 2.5 GWPhysics optimization

• n/nGW =1, HH > 1, fbs > 50 % and 
30 < Q < 50



Conclusions

• Approximate estimate of CoE is about Rs 5 to 10 per 
kW-h ( 9 to 16 Eurocents)

• Physics optimization may increase the fusion power 
output

• Hybrid and RS have different requirements in CD, 
heating and control systems

• Fusion technology development in next 25 years will 
decide the optimization in terms of technology

• Maximizing thermal efficiency is essential to bring down 
the CoE



Thank you
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