Conceptual study of Indian Fusion Power Plant

R. Srinivasan and the Indian DEMO team

Institute for Plasma Research, Bhat, Gandhinagar – 382 428, India

Plan of the talk

- Energy scenario in India
- IFPP design objectives
- Physics model
- Application to ITER-FEAT
- IFPP base line design
- Various sub-systems requirement
- Required fusion technology development
- Optimization of IFPP
- Conclusions

Energy Scenario : INDIA

- By 2100 India needs about 900 GWe (9 times todays requirement)
- Most of them has to be produced with coal and the carbon emission increases by 5 times
- If fusion power reactor is available by 2050, by 2100 it can give 67 GWe

India should have Fusion Power Reactor by 2050

Electricity Generation Capacity

P. R. Shukla et al., IIM, Ahmedabad

INDIAN FUSION ROAD MAP

Power Plant 2050

Fusion Power Reactor

DEMO

2035

- Qualification of Technologies
- Qualification of reactor components & Process

SST-2 2020

Indigenous Fusion Experiment

ITER Participation 2005

scientific and technological feasibility of fusion energy

SST-1 2004

Steady State Physics and related technologies

1986

ADITYA Tokamak

IFPP Design :Objectives

- Production of more than 1 GW net electricity
- Power plant should operate atleast for 25 FPY
- Availability of the plant should be minimum 60 %(40 yrs@60 % ~ 25 FPY)
- Cost of the electricity should be either comparable or little higher than the available one
- Environmental safety should be safe guarded
- Base line design should be
 - Conservative (any improvement will be a boost)
 - Try to use the known technologies
 - Try to use the available materials
- Design should indicate the possible directions to improve the design further

IFPP : Physics design

- Fusion performance or fusion gain (Q) has to be maximized
- Q depends on plasma performance
 - Confinement time
 - Impurity level
 - n/n_{GW}
 - $-\beta_N$
 - Normalized power crossing the separatrix
- In-directly depends on the geometry of the system
 - Maximum toroidal field at the TF conductor
 - Area available for the neutron load (breeding and damage)
 - Area available for the heat removal

Model : ITER-FEAT

Plasma	ITER-FEAT	Model prediction	
parameters			
R ₀	6.2	6.13	
а	2.0	1.98	
B _t (T)	5.3	5.4	
l _p (MA)	15.0	15.1	
P_{loss}/P_{LH}	2.5	2.1	
P _{fusion} (MW)	500	500	
P _{aux} (MW)	50	50	
<n<sub>20></n<sub>	1.1	1.1	
<t> keV</t>	8.9	8.9	
β _N	2.0	1.9	

Model : IFPP

		-		
Plasma parameters	IFPP-base		Plasma parameters	IFPP-base
R ₀	7.7		R ₀	7.7
а	2.6		а	2.6
А	3.0		А	3.0
B _t (T)	6.0		B _t (T)	6.0
I _p (MA)	21.4		I _p (MA)	17.8
f _{bs} (%)	25		f _{bs} (%)	50
P _{loss} (MW)	522		P _{loss} (MW)	720
P _{fusion} (MW)	2500		P _{fusion} (MW)	3300
P _{aux} (MW)	83		P _{aux} (MW)	110
Q	30		Q	30
n/n _{GW}	0.93		n/n _{GW}	0.93
<t> keV</t>	15.5		<t> keV</t>	21.5
β _N	2.3		β _N	3.3

MHD Equilibrium

Ideal MHD stability with PEST-2

IFPP: Sub-systems

For base line design

S. Pradhan et al.

TF system

- B_{tmax} is 12 T (Nb₃Sn)
- D-shaped (width of D-shape = 11.4 m, height = 12.4 m), Coil width is 0.6 m radial and 1.37 m toroidal, Current density is 25 Amp/mm²
- 16-18 TF modules, Electro-magnetic stress of 750 MPa
- Central solenoid with radial width of 1.4 m and radius 1.9 m, 12 m height can provide about 100 V-s
- Cooling requirement is around 20 kW @ 4.2° K

IFPP: Sub-systems

Divertor

- Expected heat load is 10 15 MW/m² (for single null)
- Double null case for 10 mm SOL, angle 20°, it is about 5 - 8 MW/m²
- In board div. area 30 m² and out board div. area 50 m²
- Number of modules has to be decided by the available port size

Sameer et al.

IFPP : Sub-systems...

Auxiliary power

P. K. Sharma et al.

- 80 MW –ve NBI will sustain the required plasma current
- Boot strap fraction is only 25 50% considered
- Additional RF power of 70 MW needed for controlling the plasma, CD and heating
- P_{ICRH}~30 MW (additional heating)
- P_{EC}~20 MW (Startup, ECCD to suppress MHD activity)
- P_{LH}~ 20 MW (for advanced scenario)

IFPP : Sub-systems...

Blanket system

Shishir et al.

- LLCB (structural 30 %, Pb-Li 40 %, Ceramic breeder 30 %)
- Inboard blanket thickness ~ 0.85 m and outboard thickness ~1.14 m
- Port size →2.4 m tor., 5.12 m height, blanket module size ~2x2x1.2, available area for breeding is 75%
- Structure material is ferritic steel
- Neutron wall load ~1.69 MW/m²
- TBR ~ 1.1
- Gain ~ 1.2
- Thermal efficiency ~ 0.3

Materials for IFPP

• High heat flux materials

First Wall Diverter Tungsten on LAFMS Tungsten (W) H_2O / He cooled

- Structural Materials
 - LAFMS
- Blanket Materials
 - Tritium breeding materials ($Li_2 TiO_3$ and Pb-Li)
 - Neutron Multiplier (Pb)
 - Flow channel inserts (SiC_f/SiC composite)
- Coolant
 - He, Pb-Li
- Shielding Material
 - WC
- Coatings
 - Trtium Permeation barrier (Al₂O₃)

P. M. Raole et al.

Tritium breeding calculations

IFPP : Fusion Tech. Development

Magnet system

- High T_c superconducting magnet
- High magnetic field at low temperature (Nb₃Al)
- Reduced central solenoid
- Divertor system
 - Single or double null
 - Modify the magnetic topology near the divertor
 - Special materials for high heat flux
- Blanket system
 - Tritium breeding
 - Power gain
 - Operating temperature (for thermal efficiency)

Variation with aspect ratio

Physics optimization

$$Q = 30, P_f = 2.5 GW$$

Conclusions

- Approximate estimate of CoE is about Rs 5 to 10 per kW-h (9 to 16 Eurocents)
- Physics optimization may increase the fusion power output
- Hybrid and RS have different requirements in CD, heating and control systems
- Fusion technology development in next 25 years will decide the optimization in terms of technology
- Maximizing thermal efficiency is essential to bring down the CoE

Thank you